
Instructions for Using the Experimental Testbed

v.2

Eleftherios Spyromitros-Xioufis, espyromi@iti.gr
Multimedia Lab, ITI/CERTH, Thessaloniki, Greece

July 23, 2013

1 Basic Info1

We provide a library of java classes that can be used to reproduce the exper-
imental results of our paper titled: ”Exploring performance trade-offs in
large-scale image search”, currently under review. Below we briefly describe
the basic components of this library and Section 2 gives specific details for run-
ning each experiment.

The basic components are the following:

• Classes of the experimental data generation package are used to ex-
tract the different types of VLAD vectors that are used in the different
experimental sections. Most of them take as input a folder with pre-
computed features for a set of images and create a BDB (Berkley Data
Base) store that contains the VLAD vectors (along with the corresponding
image identifiers) for these images.

• dimensionality reduction.PCAProjection class takes as input a BDB
store that contains full-dimensional VLAD vectors and a pre-computed
PCA matrix and produces a set of BDB stores that contain PCA-projected
(and optionally whitened) VLAD vectors.

• utilities.IndexTransformation class is used to transform an existing
index (BDB store) of PCA-projected VLAD vectors into either of 3 types
of indices: a) an index of lower-dimensional PCA-projected VLAD vec-
tors (by truncating and re-normalizing them), b) an ADC index or c) an
IVFADC index.

• evaluation.EvaluationFromFile is the evaluation class. It takes as in-
put an evaluation setup file (described in Subsection 1.3) which provides
the required information for performing the evaluation and generates an
evaluation output file (described in Subsection 1.4) with the results of the

1For the pdf links to work correctly, this documentation file should be opened from its
default location inside the folder where lsis.jar has been extracted.

1

mailto:espyromi@iti.gr

evaluation. We provide sample evaluation setup and output files for all
types of experiments in evaluation setup files and evaluation output files
respectively.

1.1 Code for Feature Extraction / Pre-computed Features

examples.SURForSIFTExtraction can be used for the extraction of SURF and
SIFT features from a set of images using various settings. Additionally we
supply pre-computed SURF and SIFT features for the images of the Holidays
dataset in data/features/.

1.2 Code for Learning / Pre-computed Learning Files

In data/learning files/ you can find pre-computed learning files (codebooks,
PCA matrices, etc.). Additionally we provide code for the generation of new
learning files. Below is the list of classes that are used in various learning steps:

• codebook generation.SampleLocalFeatures can be used for generating
random samples from sets of local feature files.

• codebook generation.SimpleKMeansWithOutput is a slightly modified
(in order to generate additional output) version of Weka’s SimpleKMeans.java
class that is used for learning a k-means quantizer. k-means clustering is
used for learning a)visual vocabularies, b)product quantizers and c)coarse
quantizers.

• dimensionality reduction.PCALearning can be used for learning PCA
matrices including means, eigenvectors and eigenvalues (used when whiten-
ing is applied). The implementation is based upon and uses the EJML
library.

• product quantization_ProductQuantizerQLearning can be used for learn-
ing product quantizers.

• product quantization_CoarseQuantizerQLearning can be used for learn-
ing coarse quantizers.

1.3 Evaluation Setup Files

An evaluation setup file is a csv file that contains (in each row) the required info
for performing an image retrieval evaluation. It contains the following attributes
(see evaluation setup files in evaluation setup files for examples):

1. collectionName: One of {Holidays/Oxford/Paris}.

2. groundTruth: Full path to the file or folder that contains the ground
truth for this collection. E.g. data/ground truth/ground truth holidays.txt
for Holidays.

2

3. length: Length of plain VLAD vectors.

4. collectionPlainBDB: Full path to the BDB store that contains the plain
(not quantized) VLAD vectors of the collection. E.g. data/BDB stores/-
exp1/BDB 4096 surf l2.

5. distractorsPlainBDB: Full path to the BDB store that contains the
plain (not quantized) VLAD vectors of the distractors (you can use an
arbitrary string to evaluate without distractors). E.g. data/BDB stores/-
exp1/BDB 4096 surf l2 distractors.

6. numDistractors: The number of distractors to be merged with the col-
lection or 0 to perform evaluation without distractors.

7. indexType: The type of the index, one of plain/adc/ivfadc. When adc
or ivfadc are selected, additional parameters need to be specified.

8. collectionAdcBDB*: Full path to the BDB store that contains the PQ
codes of the collection vectors.

9. distractorsAdcBDB*: Full path to the BDB store that contains the
PQ codes of the distractor vectors.

10. productQuantizer*: Full path to the product quantizer.

11. m*: m parameter (number of subquantizers) of the product quantizer.

12. ks*: ks parameter (centroids of each subquantizer) of the product quan-
tizer.

13. randomTransformation*: whether to perform random orthogonal trans-
formation.

14. coarseQuantizer**: Full path to the coarse quantizer.

15. kc**: kc parameter (number of centroids) of the coarse quantizer.

*Parameters used when adc or ivfadc index types are selected.
**Parameters used when ivfadc index type is selected.

1.4 Evaluation Output Files

Each row of an evaluation output type contains the results of the evaluation
specified in the respective row of the corresponding evaluation setup file. It
consists of the following attributes (see evaluation output files in evaluation -
output files for examples):

1. collectionName: One of {Holidays/Oxford/Paris}.

2. numDistractors: Number of distractors that were merged with the col-
lection for this evaluation.

3

3. length: Length of plain VLAD vectors.

4. mAP: Mean Average Precision.

5. recall@100: Recall at 100.

6. collection look-up/search time: Time in milliseconds required for
name look-up/search on the collection images.

7. distractors look-up/search time: Time in milliseconds required for
name look-up/search on the distractor images.

1.5 Installation and Setup

In order to be able to run the examples of the following section, follow these
steps:

1. Download lsis.jar and extract the contents of the jar in a folder of your
choice (e.g. C:/lsis).

2. Download the following compressed data files:

• Pre-computed SURF and SIFT features for the images of the Holi-
days collection: features.zip

• A selection of pre-computed learning files: learning files.zip

• A selection of pre-computed indexes: BDB stores.zip

and extract their contents in the /data subfolder of the folder where you
extracted the contents of lsis.jar (e.g. C:/lsis/data).

3. cd to C:/lsis/

You can consult the developer documentation (Javadoc) for more details
about the provided classes.

2 Experiment Details

2.1 Comparison of Local Features

Class for generating the data:
experimental data creation.BestFeatureData

Short description:
Given a folder with pre-computed SURF or SIFT features and two codebook files
(with 64 centroids) (one learned using original and one learned using Power+L2-
normalized features), generates two BDB stores of full-dimensional VLAD vec-
tors.
Inputs:

4

http://www.socialsensor.eu/datasets/mm-feat-idx-2013/lsis.jar
http://www.socialsensor.eu/datasets/mm-feat-idx-2013/features.zip
http://www.socialsensor.eu/datasets/mm-feat-idx-2013/learning_files.zip
http://www.socialsensor.eu/datasets/mm-feat-idx-2013/BDB_stores.zip
http://www.socialsensor.eu/datasets/mm-feat-idx-2013/javadoc/index.html

1. Full path to the folder that contains the raw feature files in text or binary
format. You can use the pre-computed features in data/features/.

2. Full path to the folder where the BDB stores will be created.

3. The type of features (sift or surf)

4. Full path to a codebook file with 64 centroids learned using L2-normalized
features of the specified type. You can use the pre-computed codebooks
in data/learning files/codebooks/exp1/.

5. Full path to a codebook file with 64 centroids learned using Power+L2-
normalized features of the specified type. You can use the pre-computed
codebooks in data/learning files/codebooks/exp1/.

Example Command:

java −cp ” l i b /∗” expe r imen ta l da ta c r ea t i on . BestFeatureData ”/
data/ f e a t u r e s / s u r f /” ”data/BDB stores/exp1/” s u r f ”data/
l e a r n i n g f i l e s / codebooks /exp1/ s u r f l 2 6 4 c . a r f f ” ”data/
l e a r n i n g f i l e s / codebooks /exp1/ sur f power+l 2 64 c . a r f f ” >
exp1 log . txt

Supplied Learning files:
Four visual vocabularies with k = 64 centroids, each one learned using a dif-
ferent type of features (SURFl2, SURFsr, SIFTl2, SIFTsr) can be found in
data/learning files/codebooks/exp1/). These vocabularies were learned using
two samples (one for SURF and one for SIFT) of approximately 100K features
from the images in Flickr100K. These samples can be found in data/learning -
files/feature samples/.
Evaluation setup file: exp1 eval.txt
Evaluation output file: exp1 results.txt
Pre-computed BDB stores: data/BDB stores/exp1

2.2 Feature Filtering

2.2.1 Based on Feature Intrinsic Structure

Class for generating the data:
experimental data creation.FeatureFilteringIntrinsicData

Short description:
Given a folder with pre-computed SURF features and a codebook file with 64
centroids learned using L2-normalized SURF features applies the selected fea-
ture filtering method to retain the desired percentage of features and generates
a BDB store of full-dimensional VLAD vectors.
Inputs:

1. Full path to the folder that contains the raw SURF feature files in text or
binary format. You can use the pre-computed features in data/features/.

5

2. Full path to the folder where the BDB stores will be created.

3. Full path to a codebook file with 64 centroids learned using L2-normalized
SURF features. You can use the pre-computed codebook file data/learn-
ing files/codebooks/exp1/surf l2 64c.arff.

4. Percentage of features to be retained (valid percentages are: 0.5, 0.8, 0.9,
0.95).

5. Filtering method to be applied (random/entropy/variance).

Additional parameters when the entropy-based filtering method is se-
lected:

6. Number of equal-width bins to be used for discretization. We used 128 in
our experiments.

7. Full path to the serialized discretization filter file. The filter used in our
experiments can be found here: data/learning files/exp2/sample 100K -
s1 surf l2 EW 128.filter.obj.

8. Full path to the serialized un-discretized Instances object. You can use
this file: data/learning files/exp2/sample 100 s1 surf.instances.obj.

PCA-projected vectors can be generated using the dimensionality reduc-
tion.PCAProjection class and the pre-computed PCA matrix data/learning -
files/pca/single voc/pca surf k64 4096o1024.txt.
Example Command (full vectors):

java −cp ” . ; l i b /∗” expe r imen ta l da ta c r ea t i on .
F e a tu r eF i l t e r i n g I n t r i n s i cDa t a ”/data/ f e a t u r e s / s u r f /” ”data
/BDB stores/exp2/” ”data/ l e a r n i n g f i l e s / codebooks /exp1/
s u r f l 2 6 4 c . a r f f ” 0 .95 entropy 128 ”data/ l e a r n i n g f i l e s /
exp2/ sample 100K s1 sur f l2 EW 128 . f i l t e r . obj ” ”data/
l e a r n i n g f i l e s /exp2/ sample 100K s1 sur f . i n s t an c e s . obj ” >
exp2 log . txt

Example Command (pca-projected vectors):

java −cp ” . ; l i b /∗” d imen s i ona l i t y r educ t i on . PCAProjection ”
data/BDB stores/exp2/BDB 4096 random 0 .95” 4096 1491 ”data
/ l e a r n i n g f i l e s /pca/ s i n g l e v o c / pca sur f k64 4096to1024 . txt
” ” f a l s e ” 128 > exp2 log . txt

Evaluation setup file: exp2 eval.txt
Evaluation output file: exp2 results.txt
Pre-computed BDB stores: data/BDB stores/exp2

6

2.2.2 Based on Feature-Vocabulary Relation

Class for generating the data:
experimental data creation.FeatureFilteringIntrinsicData

Short description:
Given a folder with pre-computed SURF features and a codebook file with 64
centroids learned using L2-normalized SURF features applies the selected fea-
ture filtering method to retain the desired percentage of features and generates
a BDB store of full-dimensional VLAD vectors.
Inputs:

1. Full path to the folder that contains the raw SURF feature files in text or
binary format. You can use the pre-computed features in data/features/.

2. Full path to the folder where the BDB stores will be created.

3. Full path to a codebook file with 64 centroids learned using L2-normalized
SURF features. You can use the pre-computed codebook file data/learn-
ing files/codebooks/exp1/surf l2 64c.arff.

4. Percentage of features to be retained (valid percentages are: 0.85, 0.90,
0.95).

5. Filtering method to be applied (dist/ratio/std).

Additional parameters when the dist filtering method is selected:

6. Full path to the file containing the thresholds for each centroid and per-
centile for the dist method. The file used in our experiments can be found
here: .

PCA-projected vectors can be generated using the dimensionality reduc-
tion.PCAProjection class and the pre-computed PCA matrix data/learning -
files/pca/single voc/pca surf k64 4096o1024.txt.
Example Command (full vectors):

java −cp ” . ; l i b /∗” expe r imen ta l da ta c r ea t i on .
F e a tu r eF i l t e r i n g I n t r i n s i cDa t a ”/data/ f e a t u r e s / s u r f /” ”data
/BDB stores/exp3/” ”data/ l e a r n i n g f i l e s / codebooks /exp1/
s u r f l 2 6 4 c . a r f f ” 0 .90 d i s t ”data/ l e a r n i n g f i l e s /exp3/
p e r c e n t i l e s . txt ” > exp3 log . txt

Example Command (pca-projected vectors):

java −cp ” . ; l i b /∗” d imen s i ona l i t y r educ t i on . PCAProjection ”
data/BDB stores/exp3/BDB 4096 dist 0 . 9” 4096 1491 ”data/
l e a r n i n g f i l e s /pca/ s i n g l e v o c / pca sur f k64 4096to1024 . txt ”
” f a l s e ” 128 > exp3 log . txt

Evaluation setup file: exp3 eval.txt
Evaluation output file: exp3 results.txt
Pre-computed BDB stores: data/BDB stores/exp3

7

2.3 Aggregation Strategies

Class for generating the data:
experimental data creation.SumVsMeanAggregationData

Short description:
Given a folder with pre-computed SURF features and a codebook file with 64
centroids learned using L2-normalized SURF features generates a BDB store of
mean-aggregated full-dimensional VLAD vectors.
Inputs:

1. Full path to the folder that contains the raw SURF feature files in text or
binary format. You can use the pre-computed features in data/features/.

2. Full path to the folder where the BDB stores will be created.

3. Full path to a codebook file with 64 centroids learned using L2-normalized
SURF features. You can use the pre-computed codebook file data/learn-
ing files/codebooks/exp1/surf l2 64c.arff.

PCA-projected vectors can be generated using the dimensionality reduc-
tion.PCAProjection class and the pre-computed PCA matrix data/learning -
files/pca/single voc/pca surf k64 4096o1024.txt.
Example Command (full vectors):

java −cp ” . ; l i b /∗” expe r imen ta l da ta c r ea t i on .
F e a tu r eF i l t e r i n g I n t r i n s i cDa t a ”/data/ f e a t u r e s / s u r f /” ”data
/BDB stores/exp4/” ”data/ l e a r n i n g f i l e s / codebooks /exp1/
s u r f l 2 6 4 c . a r f f ” > exp4 log . txt

Example Command (pca-projected vectors):

java −cp ” . ; l i b /∗” d imen s i ona l i t y r educ t i on . PCAProjection ”
data/BDB stores/exp4/BDB 4096 mean” 4096 1491 ”data/
l e a r n i n g f i l e s /pca/ s i n g l e v o c / pca sur f k64 4096to1024 . txt ”
” f a l s e ” 128 > exp4 log . txt

Evaluation setup file: exp4 eval.txt
Evaluation output file: exp4 results.txt
Pre-computed BDB stores: data/BDB stores/exp4

2.4 Vocabulary Size, PCA and Whitening

Class for generating the data:
experimental data creation.BestVocSizeData

Short description:
Given a folder with pre-computed SURF features and a comma separated list of
codebook files learned using L2-normalized SURF features generates multiple
BDB stores of full-dimensional VLAD vectors.
Inputs:

8

1. Full path to the folder that contains the raw SURF feature files in text or
binary format. You can use the pre-computed features in data/features/.

2. Full path to the folder where the BDB stores will be created.

3. Comma separated list of full paths to the codebook files learned using
L2-normalized SURF features. You can use the pre-computed codebook
files in data/learning files/codebooks/exp5.

PCA-projected (with and without whitening) vectors can be generated using
the dimensionality reduction.PCAProjection class and the pre-computed
PCA matrices in data/learning files/pca/single voc.
Example Command (full vectors):

java −cp ” . ; l i b /∗” expe r imen ta l da ta c r ea t i on . BestVocSizeData
”/data/ f e a t u r e s / s u r f /” ”data/BDB stores/exp5/”

”data/ l e a r n i n g f i l e s / codebooks /exp5/ s u r f l 2 1 6 c . a r f f , data/
l e a r n i n g f i l e s / codebooks /exp5/ s u r f l 2 3 2 c . a r f f , data/
l e a r n i n g f i l e s / codebooks /exp1/ s u r f l 2 6 4 c . a r f f ”

”16 ,32 ,64” > exp5 log . txt

Example Command (pca-projected and whitened vectors):

java −cp ” . ; l i b /∗” d imen s i ona l i t y r educ t i on . PCAProjection ”
data/BDB stores/exp5/BDB 2048” 2048 1491 ”data/
l e a r n i n g f i l e s /pca/ s i n g l e v o c / pca sur f k32 2048to1024 . txt ”
” true ” 128 > exp5 log . txt

Evaluation setup file: exp5 eval.txt
Evaluation output file: exp5 results.txt
Pre-computed BDB stores: data/BDB stores/exp5

2.5 Multiple Vocabularies

Class for generating the data:
experimental data creation.MultiVocData

Short description:
Given a folder with pre-computed SURF features and a codebook list file (that
contains full paths and sizes of multiple vocabularies learned using L2-normalized
SURF features) generates a BDB store of multiple vocabulary aggregated full-
dimensional VLAD vectors.
Inputs:

1. Full path to the folder that contains the raw SURF feature files in text or
binary format. You can use the pre-computed features in data/features/.

2. Full path to the folder where the BDB stores will be created.

3. Full path to a text file that contains the list of codebook files (full paths
and sizes) that will be used for the generation of the vectors. You can
find such a text file and the corresponding codebooks in: data/learning -
files/codebooks/exp6.

9

PCA-projected (with and without whitening)vectors can be generated using the
dimensionality reduction.PCAProjection class and the pre-computed PCA
matrix data/learning files/pca/mvoc/pca surf kx128 32768to1024.txt.
Example Command (full vectors):

java −cp ” . ; l i b /∗” expe r imen ta l da ta c r ea t i on . MultiVocData ”/
data/ f e a t u r e s / s u r f /” ”data/BDB stores/exp6/” ”data/
l e a r n i n g f i l e s / codebooks /exp6/4x128 . txt ” 4 > exp6 log . txt

Example Command (pca-projected vectors):

java −cp ” . ; l i b /∗” d imen s i ona l i t y r educ t i on . PCAProjection ”
data/BDB stores/exp6/BDB 32768 4x128” 32768

1491 ”data/ l e a r n i n g f i l e s /pca/mvoc/ pca sur f 4x128 32768to1024 .
txt ” ” true ” 128 > exp6 log . txt

Supplied Learning files:
–
Evaluation setup file: exp6 eval.txt
Evaluation output file: exp6 results.txt
Pre-computed BDB stores: data/BDB stores/exp6

2.6 Product Quantization Parameters

Class for generating the data:
utilities.IndexTransformation

Short description:
The datasets used in this experiment can be generated by transforming the
already extracted VLAD vectors into Product Quantization codes using the
utilities.IndexTransformation class and the quantizers (product/coarse)
provided in data/learning files/quantizers.
Command to transform 128 dimensional vectors to 48 dimensional
vectors:

java −cp ” . ; l i b /∗” u t i l i t i e s . IndexTransformation ”data/
BDB stores/exp6/BDB 32768 4x128to128w/” ”data/BDB stores/
exp7/BDB 32768 4x128to48w/” 128 48 1491

smal l > exp7 log . txt

Example to transform 128 dimensional vectors to ADC index:

java −cp ” . ; l i b /∗” u t i l i t i e s . IndexTransformation ”data/
BDB stores/exp6/BDB 32768 4x128to128w/”

”data/BDB stores/exp7/BDB 32768 4x128to48w pq8x10/” 128 48
1491 adc ”data/ l e a r n i n g f i l e s / quant i z e r s / pq 48 8x10 50000 .
txt ” 8 1024 f a l s e > exp7 log . txt

Example to transform 128 dimensional vectors to ADC index:

java −cp ” . ; l i b /∗” u t i l i t i e s . IndexTransformation ”data/
BDB stores/exp6/BDB 32768 4x128to128w/” ”data/BDB stores/
exp7/BDB 32768 4x128to48w rpq8x10 ivf1024 /” 128 48 1491

10

i v f ad c ”data/ l e a r n i n g f i l e s / quant i z e r s /
rpq 48 8x10 50000 c1024 . txt ” 8 1024 f a l s e ”data/
l e a r n i n g f i l e s / quant i z e r s / qc k1024 50000 . txt ” 1024 >
exp7 log . txt

Evaluation setup file: exp7 eval.txt
Evaluation output file: exp7 results.txt
Pre-computed BDB stores: data/BDB stores/exp7

11

	Basic Info
	Code for Feature Extraction / Pre-computed Features
	Code for Learning / Pre-computed Learning Files
	Evaluation Setup Files
	Evaluation Output Files
	Installation and Setup

	Experiment Details
	Comparison of Local Features
	Feature Filtering
	Based on Feature Intrinsic Structure
	Based on Feature-Vocabulary Relation

	Aggregation Strategies
	Vocabulary Size, PCA and Whitening
	Multiple Vocabularies
	Product Quantization Parameters

