|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Objectutilities.boofcv_extensions.FactoryDetectDescribeNormalization
public class FactoryDetectDescribeNormalization
Creates instances of DetectDescribePoint
for different feature detectors/describers.
Constructor Summary | |
---|---|
FactoryDetectDescribeNormalization()
|
Method Summary | ||
---|---|---|
static
|
fuseTogether(boofcv.abst.feature.detect.interest.InterestPointDetector<T> detector,
boofcv.abst.feature.orientation.OrientationImage<T> orientation,
boofcv.abst.feature.describe.DescribeRegionPoint<T,D> describe)
Given independent algorithms for feature detection, orientation, and describing, create a new DetectDescribePoint . |
|
static boofcv.abst.feature.detdesc.DetectDescribePoint<boofcv.struct.image.ImageFloat32,boofcv.struct.feature.SurfFeature> |
sift(double scaleSigma,
int numOfScales,
int numOfOctaves,
boolean doubleInputImage,
int extractRadius,
float detectThreshold,
int maxFeaturesPerScale,
double edgeThreshold,
int oriHistogramSize)
Creates a new SIFT feature detector and describer. |
|
static boofcv.abst.feature.detdesc.DetectDescribePoint<boofcv.struct.image.ImageFloat32,boofcv.struct.feature.SurfFeature> |
sift(int numOfOctaves,
float detectThreshold,
boolean doubleInputImage,
int maxFeaturesPerScale)
Creates a new SIFT feature and describer. |
|
static
|
surf(float detectThreshold,
int extractRadius,
int maxFeaturesPerScale,
int initialSampleSize,
int initialSize,
int numberScalesPerOctave,
int numberOfOctaves,
boolean modified,
java.lang.Class<T> imageType)
Creates a SURF descriptor. |
Methods inherited from class java.lang.Object |
---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Constructor Detail |
---|
public FactoryDetectDescribeNormalization()
Method Detail |
---|
public static boofcv.abst.feature.detdesc.DetectDescribePoint<boofcv.struct.image.ImageFloat32,boofcv.struct.feature.SurfFeature> sift(int numOfOctaves, float detectThreshold, boolean doubleInputImage, int maxFeaturesPerScale)
numOfOctaves
- Number of octaves to detect. Try 4detectThreshold
- Minimum corner intensity required. Try 1doubleInputImage
- Should the input image be doubled? Try false.maxFeaturesPerScale
- Max detected features per scale. Disable with < 0. Try 500
public static boofcv.abst.feature.detdesc.DetectDescribePoint<boofcv.struct.image.ImageFloat32,boofcv.struct.feature.SurfFeature> sift(double scaleSigma, int numOfScales, int numOfOctaves, boolean doubleInputImage, int extractRadius, float detectThreshold, int maxFeaturesPerScale, double edgeThreshold, int oriHistogramSize)
scaleSigma
- Amount of blur applied to each scale inside an octaves. Try 1.6numOfScales
- Number of scales per octaves. Try 5. Must be >= 3numOfOctaves
- Number of octaves to detect. Try 4doubleInputImage
- Should the input image be doubled? Try false.extractRadius
- Size of the feature used to detect the corners. Try 2detectThreshold
- Minimum corner intensity required. Try 1maxFeaturesPerScale
- Max detected features per scale. Disable with < 0. Try 500edgeThreshold
- Threshold for edge filtering. Disable with a value <= 0. Try 5oriHistogramSize
- Orientation histogram size. Standard is 36
public static <T extends boofcv.struct.image.ImageSingleBand,II extends boofcv.struct.image.ImageSingleBand> boofcv.abst.feature.detdesc.DetectDescribePoint<T,boofcv.struct.feature.SurfFeature> surf(float detectThreshold, int extractRadius, int maxFeaturesPerScale, int initialSampleSize, int initialSize, int numberScalesPerOctave, int numberOfOctaves, boolean modified, java.lang.Class<T> imageType)
Creates a SURF descriptor. SURF descriptors are invariant to illumination, orientation, and scale. BoofCV provides two variants. BoofCV provides two variants, described below.
The modified variant provides comparable stability to binary provided by the original author. The other variant is much faster, but a bit less stable, Both implementations contain several algorithmic changes from what was described in the original SURF paper. See tech report [1] for details.
Both variants use the FastHessian feature detector described in the SURF paper.
[1] Add tech report when its finished. See SURF performance web page for now.
detectThreshold
- Minimum feature intensity. Image dependent. Start tuning at 1.extractRadius
- Radius used for non-max-suppression. Typically 1 or 2.maxFeaturesPerScale
- Number of features it will find or if <= 0 it will return all features it finds.initialSampleSize
- How often pixels are sampled in the first octave. Typically 1 or 2.initialSize
- Typically 9.numberScalesPerOctave
- Typically 4.numberOfOctaves
- Typically 4.modified
- True for more stable but slower and false for a faster but less stable.
FastHessianFeatureDetector
,
DescribePointSurf
,
DescribePointSurf
,
FastHessianFeatureDetector
public static <T extends boofcv.struct.image.ImageSingleBand,D extends boofcv.struct.feature.TupleDesc> boofcv.abst.feature.detdesc.DetectDescribePoint<T,D> fuseTogether(boofcv.abst.feature.detect.interest.InterestPointDetector<T> detector, boofcv.abst.feature.orientation.OrientationImage<T> orientation, boofcv.abst.feature.describe.DescribeRegionPoint<T,D> describe)
DetectDescribePoint
.
detector
- Feature detectororientation
- Orientation estimation. Optionally, can be null.describe
- Feature descriptor
DetectDescribePoint
.
|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |