Overview
Package
Class
Use
Tree
Deprecated
Index
Help
PREV LETTER
NEXT LETTER
FRAMES
NO FRAMES
All Classes
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
M
m_Assignments
- Variable in class codebook_generation.
SimpleKMeansWithOutput
Assignments obtained.
m_centroidIndex
- Variable in class codebook_generation.
SimpleKMeansWithOutput.KMeansComputeCentroidTask
m_cluster
- Variable in class codebook_generation.
SimpleKMeansWithOutput.KMeansComputeCentroidTask
m_clusterAssignments
- Variable in class codebook_generation.
SimpleKMeansWithOutput.KMeansClusterTask
m_ClusterCentroids
- Variable in class codebook_generation.
SimpleKMeansWithOutput
holds the cluster centroids.
m_ClusterMissingCounts
- Variable in class codebook_generation.
SimpleKMeansWithOutput
m_ClusterNominalCounts
- Variable in class codebook_generation.
SimpleKMeansWithOutput
For each cluster, holds the frequency counts for the values of each nominal attribute.
m_ClusterSizes
- Variable in class codebook_generation.
SimpleKMeansWithOutput
The number of instances in each cluster.
m_ClusterStdDevs
- Variable in class codebook_generation.
SimpleKMeansWithOutput
Holds the standard deviations of the numeric attributes in each cluster.
m_completed
- Variable in class codebook_generation.
SimpleKMeansWithOutput
m_displayStdDevs
- Variable in class codebook_generation.
SimpleKMeansWithOutput
Display standard deviations for numeric atts.
m_DistanceFunction
- Variable in class codebook_generation.
SimpleKMeansWithOutput
the distance function used.
m_dontReplaceMissing
- Variable in class codebook_generation.
SimpleKMeansWithOutput
Replace missing values globally?
m_end
- Variable in class codebook_generation.
SimpleKMeansWithOutput.KMeansClusterTask
m_executionSlots
- Variable in class codebook_generation.
SimpleKMeansWithOutput
m_executorPool
- Variable in class codebook_generation.
SimpleKMeansWithOutput
For parallel execution mode
m_failed
- Variable in class codebook_generation.
SimpleKMeansWithOutput
m_FastDistanceCalc
- Variable in class codebook_generation.
SimpleKMeansWithOutput
whether to use fast calculation of distances (using a cut-off).
m_FullMeansOrMediansOrModes
- Variable in class codebook_generation.
SimpleKMeansWithOutput
Stats on the full data set for comparison purposes.
m_FullMissingCounts
- Variable in class codebook_generation.
SimpleKMeansWithOutput
m_FullNominalCounts
- Variable in class codebook_generation.
SimpleKMeansWithOutput
m_FullStdDevs
- Variable in class codebook_generation.
SimpleKMeansWithOutput
m_initializeWithKMeansPlusPlus
- Variable in class codebook_generation.
SimpleKMeansWithOutput
Whether to initialize cluster centers using the k-means++ method
m_inst
- Variable in class codebook_generation.
SimpleKMeansWithOutput.KMeansClusterTask
m_Iterations
- Variable in class codebook_generation.
SimpleKMeansWithOutput
Keep track of the number of iterations completed before convergence.
m_MaxIterations
- Variable in class codebook_generation.
SimpleKMeansWithOutput
Maximum number of iterations to be executed.
m_NumClusters
- Variable in class codebook_generation.
SimpleKMeansWithOutput
number of clusters to generate.
m_PreserveOrder
- Variable in class codebook_generation.
SimpleKMeansWithOutput
Preserve order of instances.
m_ReplaceMissingFilter
- Variable in class codebook_generation.
SimpleKMeansWithOutput
replace missing values in training instances.
m_squaredErrors
- Variable in class codebook_generation.
SimpleKMeansWithOutput
Holds the squared errors for all clusters.
m_start
- Variable in class codebook_generation.
SimpleKMeansWithOutput.KMeansClusterTask
main(String[])
- Static method in class codebook_generation.
CodebookGeneration
main(String[])
- Static method in class codebook_generation.
SampleLocalFeatures
main(String[])
- Static method in class codebook_generation.
SimpleKMeansWithOutput
Main method for executing this class.
main(String[])
- Static method in class dimensionality_reduction.
PCALearning
This method can be used for learning a PCA projection matrix.
main(String[])
- Static method in class dimensionality_reduction.
PCAProjection
main(String[])
- Static method in class evaluation.
EvaluationFromFile
main(String[])
- Static method in class experimental_data_creation.
BestFeatureData
main(String[])
- Static method in class experimental_data_creation.
BestVocSizeData
main(String[])
- Static method in class experimental_data_creation.
FeatureFilteringIntrinsicData
main(String[])
- Static method in class experimental_data_creation.
FeatureFilteringVocData
main(String[])
- Static method in class experimental_data_creation.
MultiVocData
main(String[])
- Static method in class experimental_data_creation.
SumVsMeanAggregationData
main(String[])
- Static method in class feature_extraction.
ImageScaling
main(String[])
- Static method in class feature_extraction.
SURForSIFTExtractionExample
main(String[])
- Static method in class feature_filtering.
AbstractFeatureFiltering
main(String[])
- Static method in class feature_filtering.
DiscretizationFilterCreation
This method uses the DiscretizationFilterCreation class to learn a discretization filter from an arff formatted dataset file containing real-valued features (e.g.
main(String[])
- Static method in class product_quantization.
CoarseQuantizerLearning
main(String[])
- Static method in class product_quantization.
ProductQuantizerLearning
main(String[])
- Static method in class utilities.
DescriptorsIO
main(String[])
- Static method in class utilities.
IndexTransformation
main(String[])
- Static method in class utilities.
Normalization
main(String[])
- Static method in class vector_aggregation.
VladAggregatorWithFiltering
This method can be used for calculating the percentage values in the distribution method.
maxFeaturesPerScale
- Variable in class feature_extraction.
SURFExtractor
The maximum features extracted per scale.
maxIterationsTipText()
- Method in class codebook_generation.
SimpleKMeansWithOutput
Returns the tip text for this property.
maxNumVectors
- Variable in class data_structures.
AbstractSearchStructure
The maximum number of vectors that can be indexed.
maxPixelsScaling(BufferedImage)
- Method in class feature_extraction.
ImageScaling
This method returns a scaled instance of the provided
BufferedImage
.
mean
- Variable in class dimensionality_reduction.
PCA
mean values of each element across all the samples
method
- Variable in class utilities.
ImageIOGreyScale.ContainsFilter
minFeatureIntensity
- Variable in class feature_extraction.
SURFExtractor
The minimum intensity threshold.
modified
- Variable in class feature_extraction.
SURFExtractor
The type of SURF to extract.
moveCentroid(int, Instances, boolean, boolean)
- Method in class codebook_generation.
SimpleKMeansWithOutput
Move the centroid to it's new coordinates.
msurf(Class<T>)
- Static method in class utilities.boofcv_extensions.
FactoryDescribePointAlgsNormalization
MultiVocData
- Class in
experimental_data_creation
This class can be use to generate the datasets of the multiple vocabularies experiment.
MultiVocData()
- Constructor for class experimental_data_creation.
MultiVocData
Overview
Package
Class
Use
Tree
Deprecated
Index
Help
PREV LETTER
NEXT LETTER
FRAMES
NO FRAMES
All Classes
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W