A B C D E F G H I J K L M N O P Q R S T U V W

M

m_Assignments - Variable in class codebook_generation.SimpleKMeansWithOutput
Assignments obtained.
m_centroidIndex - Variable in class codebook_generation.SimpleKMeansWithOutput.KMeansComputeCentroidTask
 
m_cluster - Variable in class codebook_generation.SimpleKMeansWithOutput.KMeansComputeCentroidTask
 
m_clusterAssignments - Variable in class codebook_generation.SimpleKMeansWithOutput.KMeansClusterTask
 
m_ClusterCentroids - Variable in class codebook_generation.SimpleKMeansWithOutput
holds the cluster centroids.
m_ClusterMissingCounts - Variable in class codebook_generation.SimpleKMeansWithOutput
 
m_ClusterNominalCounts - Variable in class codebook_generation.SimpleKMeansWithOutput
For each cluster, holds the frequency counts for the values of each nominal attribute.
m_ClusterSizes - Variable in class codebook_generation.SimpleKMeansWithOutput
The number of instances in each cluster.
m_ClusterStdDevs - Variable in class codebook_generation.SimpleKMeansWithOutput
Holds the standard deviations of the numeric attributes in each cluster.
m_completed - Variable in class codebook_generation.SimpleKMeansWithOutput
 
m_displayStdDevs - Variable in class codebook_generation.SimpleKMeansWithOutput
Display standard deviations for numeric atts.
m_DistanceFunction - Variable in class codebook_generation.SimpleKMeansWithOutput
the distance function used.
m_dontReplaceMissing - Variable in class codebook_generation.SimpleKMeansWithOutput
Replace missing values globally?
m_end - Variable in class codebook_generation.SimpleKMeansWithOutput.KMeansClusterTask
 
m_executionSlots - Variable in class codebook_generation.SimpleKMeansWithOutput
 
m_executorPool - Variable in class codebook_generation.SimpleKMeansWithOutput
For parallel execution mode
m_failed - Variable in class codebook_generation.SimpleKMeansWithOutput
 
m_FastDistanceCalc - Variable in class codebook_generation.SimpleKMeansWithOutput
whether to use fast calculation of distances (using a cut-off).
m_FullMeansOrMediansOrModes - Variable in class codebook_generation.SimpleKMeansWithOutput
Stats on the full data set for comparison purposes.
m_FullMissingCounts - Variable in class codebook_generation.SimpleKMeansWithOutput
 
m_FullNominalCounts - Variable in class codebook_generation.SimpleKMeansWithOutput
 
m_FullStdDevs - Variable in class codebook_generation.SimpleKMeansWithOutput
 
m_initializeWithKMeansPlusPlus - Variable in class codebook_generation.SimpleKMeansWithOutput
Whether to initialize cluster centers using the k-means++ method
m_inst - Variable in class codebook_generation.SimpleKMeansWithOutput.KMeansClusterTask
 
m_Iterations - Variable in class codebook_generation.SimpleKMeansWithOutput
Keep track of the number of iterations completed before convergence.
m_MaxIterations - Variable in class codebook_generation.SimpleKMeansWithOutput
Maximum number of iterations to be executed.
m_NumClusters - Variable in class codebook_generation.SimpleKMeansWithOutput
number of clusters to generate.
m_PreserveOrder - Variable in class codebook_generation.SimpleKMeansWithOutput
Preserve order of instances.
m_ReplaceMissingFilter - Variable in class codebook_generation.SimpleKMeansWithOutput
replace missing values in training instances.
m_squaredErrors - Variable in class codebook_generation.SimpleKMeansWithOutput
Holds the squared errors for all clusters.
m_start - Variable in class codebook_generation.SimpleKMeansWithOutput.KMeansClusterTask
 
main(String[]) - Static method in class codebook_generation.CodebookGeneration
 
main(String[]) - Static method in class codebook_generation.SampleLocalFeatures
 
main(String[]) - Static method in class codebook_generation.SimpleKMeansWithOutput
Main method for executing this class.
main(String[]) - Static method in class dimensionality_reduction.PCALearning
This method can be used for learning a PCA projection matrix.
main(String[]) - Static method in class dimensionality_reduction.PCAProjection
 
main(String[]) - Static method in class evaluation.EvaluationFromFile
 
main(String[]) - Static method in class experimental_data_creation.BestFeatureData
 
main(String[]) - Static method in class experimental_data_creation.BestVocSizeData
 
main(String[]) - Static method in class experimental_data_creation.FeatureFilteringIntrinsicData
 
main(String[]) - Static method in class experimental_data_creation.FeatureFilteringVocData
 
main(String[]) - Static method in class experimental_data_creation.MultiVocData
 
main(String[]) - Static method in class experimental_data_creation.SumVsMeanAggregationData
 
main(String[]) - Static method in class feature_extraction.ImageScaling
 
main(String[]) - Static method in class feature_extraction.SURForSIFTExtractionExample
 
main(String[]) - Static method in class feature_filtering.AbstractFeatureFiltering
 
main(String[]) - Static method in class feature_filtering.DiscretizationFilterCreation
This method uses the DiscretizationFilterCreation class to learn a discretization filter from an arff formatted dataset file containing real-valued features (e.g.
main(String[]) - Static method in class product_quantization.CoarseQuantizerLearning
 
main(String[]) - Static method in class product_quantization.ProductQuantizerLearning
 
main(String[]) - Static method in class utilities.DescriptorsIO
 
main(String[]) - Static method in class utilities.IndexTransformation
 
main(String[]) - Static method in class utilities.Normalization
 
main(String[]) - Static method in class vector_aggregation.VladAggregatorWithFiltering
This method can be used for calculating the percentage values in the distribution method.
maxFeaturesPerScale - Variable in class feature_extraction.SURFExtractor
The maximum features extracted per scale.
maxIterationsTipText() - Method in class codebook_generation.SimpleKMeansWithOutput
Returns the tip text for this property.
maxNumVectors - Variable in class data_structures.AbstractSearchStructure
The maximum number of vectors that can be indexed.
maxPixelsScaling(BufferedImage) - Method in class feature_extraction.ImageScaling
This method returns a scaled instance of the provided BufferedImage.
mean - Variable in class dimensionality_reduction.PCA
mean values of each element across all the samples
method - Variable in class utilities.ImageIOGreyScale.ContainsFilter
 
minFeatureIntensity - Variable in class feature_extraction.SURFExtractor
The minimum intensity threshold.
modified - Variable in class feature_extraction.SURFExtractor
The type of SURF to extract.
moveCentroid(int, Instances, boolean, boolean) - Method in class codebook_generation.SimpleKMeansWithOutput
Move the centroid to it's new coordinates.
msurf(Class<T>) - Static method in class utilities.boofcv_extensions.FactoryDescribePointAlgsNormalization
 
MultiVocData - Class in experimental_data_creation
This class can be use to generate the datasets of the multiple vocabularies experiment.
MultiVocData() - Constructor for class experimental_data_creation.MultiVocData
 

A B C D E F G H I J K L M N O P Q R S T U V W