A B C D E F G H I J K L M N O P Q R S T U V W

S

sampleIndex - Variable in class dimensionality_reduction.PCA
counts the number of currently loaded samples
SampleLocalFeatures - Class in codebook_generation
This class is used for creating samples of local features (in csv format) which can then be used for learning visual vocabularies.
SampleLocalFeatures() - Constructor for class codebook_generation.SampleLocalFeatures
 
sampleSize - Variable in class dimensionality_reduction.PCA
number of elements in each sample
samplesX - Variable in class utilities.boofcv_extensions.DescribePointSurfModNormalization
 
samplesY - Variable in class utilities.boofcv_extensions.DescribePointSurfModNormalization
 
sampleToEigenSpace(double[]) - Method in class dimensionality_reduction.PCA
Converts a vector from sample space into eigen space.
sampleWidth - Variable in class utilities.boofcv_extensions.DescribePointSurfModNormalization
 
scanForPlugins() - Static method in class utilities.ImageIOGreyScale
Scans for plug-ins on the application class path, loads their service provider classes, and registers a service provider instance for each one found with the IIORegistry.
serialVersionUID - Static variable in class codebook_generation.SimpleKMeansWithOutput
for serialization.
setBasisMatrix(double[][]) - Method in class dimensionality_reduction.PCA
Sets the PCA basis matrix.
setCacheDirectory(File) - Method in class utilities.ImageIOGreyScale.CacheInfo
 
setCacheDirectory(File) - Static method in class utilities.ImageIOGreyScale
Sets the directory where cache files are to be created.
setCoarseQuantizer(double[][]) - Method in class data_structures.IVFADC
With this method we initialize the table holding the coarse quantizers.
setCompact(boolean) - Method in class dimensionality_reduction.PCA
 
setDescriptorDatasetFormat(String) - Method in class feature_filtering.EntropyBasedFiltering
 
setDescriptorLength(int) - Method in class vector_aggregation.AbstractFeatureAggregator
 
setDiscretizationFilter(String) - Method in class feature_filtering.EntropyBasedFiltering
 
setDisplayStdDevs(boolean) - Method in class codebook_generation.SimpleKMeansWithOutput
Sets whether standard deviations and nominal count.
setDistanceFunction(DistanceFunction) - Method in class codebook_generation.SimpleKMeansWithOutput
sets the distance function to use for instance comparison.
setDontReplaceMissingValues(boolean) - Method in class codebook_generation.SimpleKMeansWithOutput
Sets whether missing values are to be replaced.
setDoWhitening(boolean) - Method in class dimensionality_reduction.PCA
 
setEigenvalues(double[]) - Method in class dimensionality_reduction.PCA
Initializes the diagonal eigenvalue matrix PCA.W by using the supplied vector and then whitens the projection matrix PCA.V_t
setExternalId(String) - Method in class utilities.Result
 
setFastDistanceCalc(boolean) - Method in class codebook_generation.SimpleKMeansWithOutput
Sets whether to use faster distance calculation.
setHasPermission(Boolean) - Method in class utilities.ImageIOGreyScale.CacheInfo
 
setImage(II) - Method in class utilities.boofcv_extensions.DescribePointSurfNormalization
 
setIndexSearchTime(long) - Method in class utilities.Answer
 
setInitializeUsingKMeansPlusPlusMethod(boolean) - Method in class codebook_generation.SimpleKMeansWithOutput
Set whether to initialize using the probabilistic farthest first like method of the k-means++ algorithm (rather than the standard random selection of initial cluster centers).
setInternalId(int) - Method in class utilities.Result
 
setL2Normalization(boolean) - Method in class feature_extraction.DescriptorExtractor
 
setMaxIterations(int) - Method in class codebook_generation.SimpleKMeansWithOutput
set the maximum number of iterations to be executed.
setMean(double[]) - Method in class dimensionality_reduction.PCA
 
setNameLookupTime(long) - Method in class utilities.Answer
 
setNumCentroids(int) - Method in class vector_aggregation.AbstractFeatureAggregator
 
setNumClusters(int) - Method in class codebook_generation.SimpleKMeansWithOutput
set the number of clusters to generate.
setNumExecutionSlots(int) - Method in class codebook_generation.SimpleKMeansWithOutput
Set the degree of parallelism to use.
setOptions(String[]) - Method in class codebook_generation.SimpleKMeansWithOutput
Parses a given list of options.
setPCAFromFile(String) - Method in class dimensionality_reduction.PCA
Initializes the PCA matrix, means vector and optionally eigenvalues matrix from the given file.
setPercentiles(String) - Method in class vector_aggregation.VladAggregatorWithFiltering
This method sets the percentile values used by the dist methdod.
setPowerNormalization(boolean) - Method in class feature_extraction.DescriptorExtractor
 
setPreserveInstancesOrder(boolean) - Method in class codebook_generation.SimpleKMeansWithOutput
Sets whether order of instances must be preserved.
setProductQuantizer(double[][][]) - Method in class data_structures.IVFADC
With this method we initialize the table holding the product quantizer.
setResults(Result[]) - Method in class utilities.Answer
 
setScaleSpace(SiftImageScaleSpace) - Method in class utilities.boofcv_extensions.DescribePointSiftNormalization
 
setUseCache(boolean) - Method in class utilities.ImageIOGreyScale.CacheInfo
 
setUseCache(boolean) - Static method in class utilities.ImageIOGreyScale
Sets a flag indicating whether a disk-based cache file should be used when creating ImageInputStreams and ImageOutputStreams.
setW(int) - Method in class data_structures.IVFADC
 
sift(int, int, int) - Static method in class utilities.boofcv_extensions.FactoryDescribePointAlgsNormalization
 
sift(int, float, boolean, int) - Static method in class utilities.boofcv_extensions.FactoryDetectDescribeNormalization
Creates a new SIFT feature and describer.
sift(double, int, int, boolean, int, float, int, double, int) - Static method in class utilities.boofcv_extensions.FactoryDetectDescribeNormalization
Creates a new SIFT feature detector and describer.
SIFTExtractor - Class in feature_extraction
This class used the BOOFCV library for extracting SIFT features.
SIFTExtractor() - Constructor for class feature_extraction.SIFTExtractor
 
SIFTExtractor(boolean) - Constructor for class feature_extraction.SIFTExtractor
 
SIFTLength - Static variable in class feature_extraction.DescriptorExtractor
 
sigmaToRadius - Variable in class utilities.boofcv_extensions.DescribePointSiftNormalization
 
SimpleKMeansWithOutput - Class in codebook_generation
Cluster data using the k means algorithm.
SimpleKMeansWithOutput() - Constructor for class codebook_generation.SimpleKMeansWithOutput
the default constructor.
SimpleKMeansWithOutput.KMeansClusterTask - Class in codebook_generation
 
SimpleKMeansWithOutput.KMeansClusterTask(Instances, int, int, int[]) - Constructor for class codebook_generation.SimpleKMeansWithOutput.KMeansClusterTask
 
SimpleKMeansWithOutput.KMeansComputeCentroidTask - Class in codebook_generation
 
SimpleKMeansWithOutput.KMeansComputeCentroidTask(int, Instances) - Constructor for class codebook_generation.SimpleKMeansWithOutput.KMeansComputeCentroidTask
 
squareScaling(BufferedImage) - Method in class feature_extraction.ImageScaling
This method returns a scaled instance of the provided BufferedImage.
squareScaling(String) - Method in class feature_extraction.ImageScaling
Same as ImageScaling.squareScaling(BufferedImage) but takes the imageFileName instead of a BufferedImage.
ss - Variable in class utilities.boofcv_extensions.DescribePointSiftNormalization
 
ss - Variable in class utilities.boofcv_extensions.DetectDescribeSiftNormalization
 
startExecutorPool() - Method in class codebook_generation.SimpleKMeansWithOutput
Start the pool of execution threads
subVectorLength - Variable in class data_structures.ADC
The length of each subvector.
subVectorLength - Variable in class data_structures.IVFADC
The length of each subvector of the residual vectors.
SumVsMeanAggregationData - Class in experimental_data_creation
This class can be used to generate the datasets of sum vs mean aggregation experiment.
SumVsMeanAggregationData() - Constructor for class experimental_data_creation.SumVsMeanAggregationData
 
surf(Class<T>) - Static method in class utilities.boofcv_extensions.FactoryDescribePointAlgsNormalization
 
surf(float, int, int, int, int, int, int, boolean, Class<T>) - Static method in class utilities.boofcv_extensions.FactoryDetectDescribeNormalization
Creates a SURF descriptor.
SURFExtractor - Class in feature_extraction
This class implements SURF feature extraction using the BoofCV library.
SURFExtractor() - Constructor for class feature_extraction.SURFExtractor
 
SURFExtractor(int, int, boolean) - Constructor for class feature_extraction.SURFExtractor
 
SURFLength - Static variable in class feature_extraction.DescriptorExtractor
 
SURForSIFTExtractionExample - Class in feature_extraction
Extracts SURF or SIFT features from images contained in a folder and writes a .surf(b) or .sift(b) file for each image.
SURForSIFTExtractionExample() - Constructor for class feature_extraction.SURForSIFTExtractionExample
 
syncRate - Variable in class data_structures.AbstractSearchStructure
The rate at which the disk-based indexed should be updated.

A B C D E F G H I J K L M N O P Q R S T U V W